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We present a method for numerically solving certain linear Fredholm integral equa- 
tions of the second kind. The solution involves a Chebyshev series approximation, the 
coefficients of which are solutions of a linear system of equations. The coefficients of 
these equations are computed using recurrence relations that depend on the kernel. 
For a number of important kernels, the recurrence relations are given in this paper. 
To illustrate the method, it is applied to an integral equation that arises in the theory 
of intrinsic viscosity of macromolecules and to Love’s integral equation. Both equa- 
tions have been dealt with elsewhere, and we compare our results to those already 
published. 

1. INTRODUCTION 

In this paper we consider a numerical method for the solution of the Fredholm 
integral equation of the second kind 

where 4 is the function to be determined. The constant A, the kernel function K 

and the functi0n.f are given. Since by means of a linear transformation, any finite 
interval [a, b] can be converted to [ - 1, 11, we assume that the range of the variables 
is normalized so that - 1 < x, y ,< I. 

The solution of (1) is expressed as a series 

C(x) = W’(X) -f cpT&), (2) 
k=O 

where 7’,(x) is the Chebyshev polynomial of the first kind and of degree k, and 
where the function w has to be chosen so that the Chebyshev series expansion in 
the right-hand member of (2) is rapidly converging. This means, that w has to 
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SOLUTION OF INTEGRAL EQUATIONS 179 

contain the same singularities as 4. In many cases, w = 1 is a convenient choice. 
Of course, for numerical computations, the infinite series (2) has to be truncated 
after a finite number of terms, say N + 1, so that 

r+(x) = w(x) ; &r,(x) + E(X), 
k=O 

where c(x) is the remainder. 

(3) 

It is our purpose to determine the coefficients co, c1 ,..., cN . The use of the 
Chebyshev series for the numerical solution of linear integral equations has 
previously been discussed by Elliott [l, 21, Fox and Parker [3], and Scraton [4], 
and of nonlinear integral equations by Wolfe [5], Sag [6], and Shimasaki and 
Kiyono [7]. All methods are based on the same idea. Substituting (3) in (1) yields 
a system of linear or nonlinear equations in the unknown coefficients co, cr ,..., cN . 
They differ only in the method of setting up this system of equations and in the 
method of solving it. In Elliott’s method, the kernel function K(xi , y) is approxi- 
mated by a polynomial of degree M in the form 

(4) 

for N + 1 different values xi , i = 0, l,..., N, and then the system 

i = 0, l,..., N has to be solved for the unknowns cK . The numerical computation 
of b,(xi), n = 0, I,..., M and i = 0, l,..., N requires (M + l)(N + 1) evaluations 
of K(x, y). Moreover, for each value of i, the number of multiplications is of 
order O(M*) if Clenshaw’s algorithm [8] is used or of order O(M log M), if the 
FFT-algorithm is used [9]. Especially if K is a singular kernel or a strongly 
oscillating or peaked function, the value of M has to be chosen very large, in order 
to have a reasonable accuracy. Elliott’s method (and also the other methods) 
requires then a large amount of computational effort and often it is even not 
practically applicable. We present here a new, efficient method using recurrence 
formulas, which is, however, not generally applicable. Nevertheless, it is applicable 
for some important integral equations of mathematical physics. 

2. METHOD OF SOLUTION 

Substituting (3) into (1) and neglecting c(x), we have 

(6) 
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Zk(X) = [ +l K(x, y) w( 4’) Tk( y) dy. (7) 
.’ -, 

Substituting N + 1 values of s, say x0, x1 ,..., XN , into (6), we obtain a system 
of linear equations, the solution of which gives approximate values of the 
Chebyshev series coefficients cg . In our following computations, we choose the 
abscissas xI, equidistantly between - 1 and 1, or, if fl are singular points, between 
-0.95 and f0.95. Of course, more than N + 1 values of x can be substituted, 
but then we have to determine a solution of an overdetermined system of equations. 

The remaining problem is the evaluation of Zk(xj) for j, k = 0, l,..., N. In a 
number of important cases, this can be done using linear recurrence relations, as 
we shall illustrate in the following sections. The derivation of these recurrence 
relations is based on the properties of the Chebyshev polynomials [3]. We give one 
completely developed example in the Appendix. The other recurrence relations 
in this paper can be derived in an analogous way. 

Of course, since recurrence relations are susceptible to error growth, we have 
to be concerned with the numerical stability. A very interesting review of the 
computational aspects of homogeneous three-term recurrence relations is given 
by Gautschi [lo]. More general recurrence relations are studied by Oliver [I 1, 121. 
This author gives an algorithm for the stable computation of the solutions of 
recurrence relations, if forward recursion is unstable. The essential idea of this 
algorithm, in the case of a (n + 1)-term recurrence relation, is the replacement of 
the n initial conditions (starting values) by k initial conditions and n - k end 
conditions. The value of k depends on the relative behavior of all solutions of the 
recurrence relation. Details of our study of the numerical stability of the recurrence 
relations considered in this paper, will appear in a later publication. Here we shall 
only indicate whether forward recursion is stable or Oliver’s algorithm has to be 
used. 

The computations in the following sections were carried out on a IBM 370/158 
computer, using double precision arithmetic. All computer programs were written 
in FORTRAN IV and the compiler used was the level G-compiler. For the solution 
of the linear system of equations the program of Forsythe and Moler [ 131 was used. 

3. APPROXIMATE SOLUTION OF A SINGULAR INTEGRAL EQUATION 
ARISING IN POLYMER PHYSICS 

The theory of intrinsic viscosity, developed by Kirkwood and Riseman [14] 
requires the solution of the linear weakly singular integral equation 

O<a<l, (8) 
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The solutions of this equation have been discussed by Auer and Gardner [15] 
and numerical methods of solution have been presented by Ullman [16, 171, 
Schlitt [18], and more recently by Cohen and Ickovic [19]. These methods have 
the disadvantage that the solution 4(x) is computed at a restricted number of 
values of x determined by some type of quadrature formula. To find 4(x) at other 
values of x an interpolation scheme can be used or all computations have to be 
repeated using another quadrature formula. 

We assume thatf is an even function, but the general case can be solved in the 
same way. Note that 4 then also is an even function. Assume that the solution can 
be represented by 

[N/21 

G-) = c c2J27m (9) 
k=O 

where [N/2] means the integer part of N/2. 
To construct the system of linear equations for the determination of the cpk, 

we have to evaluate 

x - Y IP Tk(Y) @, k = 0, 1, 2 ,..., N. 

The recurrence relation for Zk(x) is, for I x I < 1, 

[ 1 + -&+I &+1(x) - 2x1&) + [l - *] I,-,(x) 

= & [(l - xy - (-1)” (1 + x)1-=], 

which can be solved by forward recursion in a numerically stable way. 
Starting values for this recurrence relation are, 

Z,(x) = (l/(1 - Lx))[(X + l)l-= + (1 - x)1-=] 
Z,(x) = xZo(x) + (l/(2 - a))[(1 - x)2--0 - (1 + x)2-q 

and 

Z,(x) = 4x1,(x) - (2x2 + 1) Z,(x) + (2/(3 - a))[(1 - x)~- + (1 + x)~-“1. (11) 

To evaluate the usefulness of our method and to allow comparison with the 
published results in [17-191 we have solved (8) for the case where f(x) = x2, 
a = fr and h = 0.5, 5, 20, and 200. 

In Table I, we compare some numerical values of our solution (N = 20) with 
those obtained by other methods, which use 20-point quadrature formulas. In 
Table II, we present the coefficients cek . As can be seen, all methods agree with 
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TABLE I 

Values of 4 in Selected Abscissas of the 20-point Gauss-Legendre Quadrature Formula” 

A s Ullman Schlitt 
Cohen- 
Ickovic 

Present 
method 

0.5 

5.0 

20 

200 

0.99313 0.63303 0.63130 0.62997 0.62856 

0.96397 0.55114 0.54817 0.54650 0.55111 

0.74633 0.25311 0.25121 0.24995 0.25121 

0.51087 0.06767 0.06737 0.06631 0.06733 

0.07653 -0.07907 -0.07790 -0.07882 -0.07799 

0.993 13 0.19322 0.19148 0.19018 0.18659 

0.96397 0.13553 0.13346 0.13112 0.13789 

0.74633 0.04332 0.04269 0.04209 0.04263 

0.51087 0.00358 0.00369 0.00332 0.00364 

0.07653 -0.02496 -0.02429 -0.02456 -0.02434 

0.99313 0.06127 0.06049 0.05998 0.05807 

0.96397 0.03873 0.03803 0.02695 0.04007 

0.74633 0.01135 0.01174 0.01099 0.01114 

0.51087 0.00049 o.ooo54 0.00044 0.00052 

0.07653 -0.00718 -0.00697 -0.00704 -0.00699 

0.99313 0.00671 0.00661 0.00655 0.00630 

0.96397 0.00404 0.00397 0.00382 0.00422 

0.74633 0.00115 0.00113 0.00111 0.00113 

0.51087 0.00003 0.00004 o.OOoo3 0.00004 

0.07653 -0.00075 -0.00073 -0.00074 -0.00073 

a Obtained by the methods of Ullman, Scblitt, Cohen, and Ickovic; and our method. 

each other quite well and it is difficult to say which method is the more accurate. 
Auer and Gardner [15] have obtained an asymptotic solution of (8). For 

f(x) = x2 and ar = 3 they obtained 

+(x) - x0(4x2 - l)(l - x2)-l/4/3&$ A -+ co. (12) 

Thus, for h --f 00, the solution of (8) has singularities at x = fl. Therefore 
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TABLE II 

Approximate Values of the Chebyshev Coefficients cek of the Solution of 

k x = 0.5 X=5 x = 20 x = 200 

0 0.486380 0.108225 0.031321 0.0033030 

1 0.349607 0.096094 0.028691 0.0030568 

2 0.034159 0.025573 0.009097 0.0010305 

3 0.013101 0.013312 0.005124 0.0005975 

4 0.006146 0.007348 0.003003 0.0003574 

5 O.&o2943 0.003951 0.001668 0.0002016 

6 0.001313 0.001904 0.000828 0.0001013 

7 0.000507 0.000778 0.000347 0.0000428 

8 0.000156 0.000250 0.000113 o.oOOO141 

9 0.000033 0.000055 0.000026 O.OOOOO32 

10 O.OOOOO4 O.OOOOO6 o.OOOOO3 O.OOOOOO4 

for large values of A, we may expect that, instead of (9), the solution of (8) can be 
represented more accurately by 

4(x> = (1 - XY (1 + .Y)Y c 4J&), 
h=a 

(13) 

where the best values of /3 and y are probably --a. 
To calculate dzk in the way described above, we have to evaluate 

for 01 = 4 and p = y = --a. This can be done by the recurrence relation 

(p + y - a + 3 + k) Jk+dx) + Wl - x)(1 + B) - (1 + x)(1 + r) - xkl Jk,I(X) 
+ 2[(1 - 24 + B) + (1 + 24u + r> + c-i - 11 u-4 
+ 2[(1 - x)(1 + p> - (1 + x)(1 + Y) + xklJk-,W 
+ @ + y - 01 + 3 - k) J,-,(x) = 0. (15) 
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with starting values 

where 

Jo(x) = G(a, 8, y, xl, 

J,(x) = f.3~~ B, Y + 1, -3 - Jo(x), 
(16) 

G(cY, ,8, y, x) = 26(1 + x)‘--+~ B(y + 1, 1 - CX) 

x 2&<-B, y + 1; 2 + y - “; (1 + x)/2) 
+ 2Y(l - x)6-=+1 B@ + 1, 1 - OL) 

x J,(-y, B + 1; 2 + B - a; (1 - -Q/q, 

where B(ol, /3) = I F@)/F(a: + p) is the beta function and ,F&, b; c; x) is 
the hypergeometric function. 

Relation (15) remains valid for k = 0 and 1, if JkJx) and J,-,(x) are replaced 
by JI&x) and J~~-,l(x). So, if J,,(x) and J,(x) are known, J,(x) and J3(x) can be 
computed, using (15), and forward recursion, which is numerically stable, can be 
started. 

Although the expressions for Jk(x), k = 0, 1 are suitable for numerical compu- 
tations, it seems easier and more efficient to evaluate Jk(x) by numerical calculation 
of the integrals in the right-hand member of 

Jk(X) = SI, (x - y-” (1 + u)’ (1 - JY Tk(Y) 4J 

+ j’ (u - x)-” (1 - YY (1 + 4’)Y Tk(Y) 4, 
z 

(17) 

using the automatic integrator AINAB, presented in [20] which is tailored for 
these types of integrals. Moreover, if fl = y and 2/3 - 01 + 1 = 0, it can be shown 
that 

J,(x) = -rr/sin /%r, (independent of x), 
and 

J,(x) = cYxJo(x). 

Thus, in our case where 01 = 4 and j? = y = -$, we have 

J,(x) = lmr, 

J,(x) = xtT/%Kz, 

J,(x) = (3x2 - 2) 7r/25’2, 

J,(x) = (5x3 - 4x) ?7/23/3. 

(18) 
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TABLE III 

Approximate Solution of Eq. (8) Computed using the Expression (13) 

A x N = 20 N = 24 

0.5 0.99313 0.734579 0.717451 

0.96397 0.546128 0.545532 

0.74633 0.249856 0.250040 

0.51087 0.066419 0.066541 

0.07653 -0.078712 -0.078616 

5 0.99313 0.201681 0.199768 0.197854 

0.96397 0.131435 0.131519 0.131652 

0.74633 0.042418 0.042444 0.042469 

0.51087 0.003528 0.003542 0.003556 

0.07653 -0.024427 -0.024417 -0.024407 

20 0.99313 0.060277 0.060092 0.059902 

0.96397 0.037604 0.037617 0.037636 

0.74633 0.011129 0.011132 0.011134 

0.51087 0.000513 0.000515 0.000516 

0.07653 -0.006995 -0.006995 - 0.006994 

200 0.99313 0.00641311 0.00641096 0.00640874 

0.96397 0.00393224 0.00393241 0.00393266 

0.74633 0.00112775 0.00112778 0.00112781 

0.51087 0.00003723 0.00003724 0.00003726 

0.07653 -0.00073023 -0.00073022 -0.00073021 

N= 30 
- 

0.701180 

0.545315 

0.250216 

0.066658 

-0.078524 

In Table III, we give the results for X = 0.5,5,20, and 200, computed with N = 20, 
24, and 30. 

In Table IV, the coefficients dzk, k = 0, l,..., 12 are reported (coefficients 
which are less than lo-’ are omitted). The values of dzk as well as the results in 
Table III show that (13) is a good approximation, which converges satisfactorily 
for increasing values of N, especially if h is large. The reliability of the results of 
Table III was checked by recomputing them using another set of x,-values, so 
that another system of equations for the coefficients dsk was to be solved. These 
check calculations lead to the conclusion that the values in Table III for N = 30 
are accurate to at least two and often even three significant figures. 

581/21/z-5 
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TABLE IV 

Coefficients d?, of the Approximate Solution $(x) : (1 - x~)-~/’ c &T,,(X) 
of the Integral Eq. (8) k.4 

k x = 0.5 A=5 x = 20 x = 200 

0 0.271389 0.051076 

1 0.180131 0.048666 

2 -0.051883 -0.003590 

3 -0.021577 -0.001987 

4 -0.010586 -0.001151 

5 -0.005388 -0.000656 

6 -0.002708 -0.000359 

7 -0.001304 -0.000184 

8 -0.000588 -0.000087 

9 -0.000242 -0.000038 

10 -0.000089 -0.000014 

11 -0.GUOO28 -0.OOOOO5 

12 -0.OOOOO7 -0.OOOOO1 

0.014418 

0.014171 

-0.000306 

-0.000181 

-0.000110 

-0.000065 

-0.OOoO37 

-0.000019 

-0.ooooO9 

-0.ooooO4 

-0.OOOOO2 

0.0014943 

0.0014917 

-0.OOOOO34 

-0.OOOOO20 

-0.OOOOO13 

-0.OOOOOO8 

-0.0000004 

-0.OOOOOO2 

Since the applications of the solutions of (8) to polymer physics involve an 
integral of 4(x) over x, another advantage of our method is that (9) can be 
integrated analytically [3] and that the integral of (13) can be computed accurately 
using Gauss-Jacobi quadrature formulas [21], or using the integrator AINAB [20]. 

4. LOVE'S INTEGRAL EQUATION 

In [22], Love shows that the field of two equal circular coaxial conducting disks 
of radius r, separated by a distance a x r and at equal or opposite potential, with 
zero potential at infinity, is given by the solution of the integral equation 

(19) 

where X = &I/T. 
This equation with (I = 1 has been considered by numerous authors. It is 

treated by Fox and Goodwin [23], using finite-difference methods, by Brakhage 
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[24] and Boland [25] using a quadrature formula method and by Elliott [2] and 
Fox and Parker [3] using Chebyshev series approximations. 

Our method requires the evaluation of 

M4 = I-l1 a a* + (x - Y)” 
T,(Y) dy 

using the recurrence relation 

zk+2(x) - 4X1,+,(X) + (2 + 4a2 + 4x2) Zk(X) - 4xZ&x) 

+ L,(x) = (4a/(l - k2))[1 + (-VI,, 

where, if a # 0, 

l-x Z,(x) = arctan a + arctan l+x , 
a 

a (1 - x)” + a2 
Zdx) = x4M + 2 ln (1 + xj2 + a2 , 

(20) 

(20 

(22) 

Z,(x) = 4xZI(x) - (2a2 + 2x2 + 1) Z,(x) + 4a, 

Zs(x) = -(4a2 - 12x2 + 3) Z,(x) - 8x(a2 + x2) Z,(x) + 16xa. 

Since the kernel of (19) is symmetric and infinitely differentiable the solution can be 
represented by a rapidly converging Chebyshev series of the form (9). 

TABLE V 

The Coeficients ctk for Love’s Equation +(x) = 2 c2J.&) 
k-0 

k h = -l/Tr x = l/rl 

0 3.5488896186 1.4151851841 

1 -0.1400430542 0.0493850582 

2 0.0049619937 -0.0010475174 

3 O.ooO3762979 -0.0002327553 

4 -0.0000436869 0.0000199861 

5 -0.OOOOO16232 O.OOOOOO9868 

6 O.OOOOOO4965 -0.OOOOOO2380 

7 -0.0000000064 0.0000000019 

8 -0.0000000051 0.0000000024 

9 0.0000000003 0.0000000001 
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In Table V, the coefficients czli are reported. They agree to within six to seven 
decimal figures with the numbers given by Elliott [2]. Our solution is accurate 
to 10 decimal places. This was checked by recomputing it with more terms in the 
Chebyshev series approximation, and using extended precision arithmetic. 

The numerical instability of forward recursion of (21) increases with increasing 
values of 1 a 1. On the other hand, the Chebyshev series expansion of the solution 
is faster converging, such that less terms are needed to obtain a given accuracy. 
It turns out that, if the requested accuracy of the solution is not higher than IO-lo 
and if double precision arithmetic is used, forward recursion may be applied. 

5. OTHER RECURRENCE RELATIONS 

If the kernel of the Fredholm integral equation (1) is equal to or can 
be approximated by a linear combination of the following functions:1 x - y Ia, 
I x - Y P (1 - #(1 + Y)Y, [a2 + (x - y)“l-‘, (1 + Y)* ev[-x(y + 91, exp(-a-v2), 
exp[--ax(y + 1)2], cos(axy), sin(axy), I x - y j* sign(x - y), (a” + x2 + y2)0, 
exp[ -x/( y + l)], ( y - x-l, where 01, fl, y, and a are parameters, the method of 
solution described in this paper can be applied, using (lo), (15), and (21), and the 
recurrence relations, presented in this section. Moreover, if in these functions x 
is replaced by an arbitrary function of x, the present method remains applicable. 
As can be seen all functions are singular, or strongly oscillating or peaked (at 
least for some values of the parameters 01 and a), Consequently, from the view- 
point of the amount of computational effort, in most cases the present method 
will be superior over Elliott’s method, even if the starting values of the recurrence 
relations involve special functions, which are rather difficult to compute. 

(i) I,(x) = 
s +’ (1 + J!)” expl--.y(y + I)1 T,(y) 4: a > -1. 

-1 

The recurrence relation is 

X 

4(a + 1) L+2c4 + [; + 
n+1-x - 

qn + 1) ] L+,W + [ 1 + ,cn2” 1) ] L(x) 

+ [; - a2; ‘;,” 1 
2a+le-2x 

L-l(X) + 4(n " 1) L,(x) = - ____ . 
112 - 1 (23) 

Starting values are 

Z,(x) = fi 9 

4(x) = h - fi f 

z2(x)=2f,--4f+f,, 

u4=4fi- w2+9!-h, 
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where 

where 
fn = P((y. + n, 2x) ~-(a+~) 

P(a, x) = jz e-+-l dt. 
0 

P(a, x) can be computed efficiently using the integrator AINAB, given in [20] 
but if x > 0, P(a, x)/r(a) is the incomplete gamma function, for the computation 
of which a FORTRAN-program can be found in [26]. 

For the computation of (23), Oliver’s algorithm has to be used with two initial 
conditions. As a special case we have 

I,*(~) = j-1’ exp[--x(y + 111 T,(Y) dv. 

The recurrence relation is 

* C+dx) - X*(x) - j&j- ZL(4 = & [exp(-2x) 
with starting values, for x # 0, 

Z,*(X) = [i - exp(-2x)1/x, 
Z,*(x) = (x-2 - x-l) - exp(-2x)(x-2 + x-l), 
Z,*(x) = (4x-3 - 4x-* + x-l) - exp(-2x)(4x-3 + 4x-2 

(- vi (24) 

x-1). + 

To have numerical stability, Oliver’s algorithm has to be used with one initial 
condition. 

(ii) In(x) = j-y exp(--a-v2) T,(Y) dy, 

where a is a positive parameter, and x # 0. 

Zn(x) = 0, if n is odd. 

The recurrence relation is 

a(n - 1) Z,+,(x) + 2x-l(l - n” - ax) Z,(x) - a(n + 1) Z&x) = 4x-l exp(-ax) 

(25) 
with starting values 

&J(x) = (a$2 ‘o F (‘d” exp(--y2) dv = (2)“’ erf(ax)l/z, if x > 0, (26) 
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or 

z&4 = (-u~~)l,2 I 
I-tZXP’z 

exp(y2) do, if s < 0, o (27) 

and 

Z2(x) = -2 exp(-@/(ax) + (l/(ax) - I) Z,(x). 

A Chebyshev series approximation for the computation of the integral in (27), 
which is Dawson’s integral, is given in [27]. 

For (25), Oliver’s algorithm has to be used with one initial condition. 

(iii) In(x) = 1-T exp[--ax-(y + II21 T,(Y) 4~ 

where a is a positive parameter, and x # 0. 
The recurrence relation is 

4n - l)[L+,(x) + 2L&)l - (2/x)(ax + n2 - l)&(x) 
- 4n + lWn-l(x) + L2(xN = Wx)[exp(-+x) + (--lN, (28) 

with starting values 

Z,(x) = i (-Jl” erf(2(ux)1/2), if x > 0, 

or 

z&9 = c-u~)l,2 s 2(-a&‘* eM.v? dh if 5 < 0, o 
and 

Z,(x) = (2ux)-I[1 - exp(-4ux)] - Z,(x), 
Z,(x) = [I + (ax)-‘] Z,(x) - 2(ux)4, 
Z,(x) = --[I + 6(ux)-l] Z,(x) - [~(ux)-~ + (~Qx)-~] exp(--4ax) 

+ 2(ux)-2 + 9(2ux)-1. 

The integral in (30) is Dawson’s integral. 
Recurrence relation (28) has to be solved using Oliver’s algorithm with 2 initial 

conditions. 

COS@XY) T,(Y) dy, where x # 0. 
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The recurrence relation is 

a2x2(n - l)(n - 2) Z,+,(x) - 2(n2 - 4)(a2x2 - 2n2 + 2) In(x) 
+ u2xz(n + l)(n + 2) Z,-,(x) = 24ux sin ax - 8(n2 - 4) cos (IX. (31) 

Starting values are 

Z,(x) = 2 sin ux/(ux), 

Z,(x) = 8 cos UX/(UX)~ + (2u2x2 - 8) sin UX/(UX)~, 
Z*(x) = 32(urx2 - 12) cos ux/(ux)” + 2(u4X4 - 80u2xz + 192) sin UX/(UX)~. 

Forward recursion of (3 1) is numerically stable up to n = [ ] ax I]. For larger values 
of n, Oliver’s algorithm has to be used with one initial condition. 

69 La(x) = f:’ sin(uxy> T,(Y) dy, where x # 0 

L(x) = 0, for even values of n. 

The recurrence relation is 

u2x2(n - l)(n - 2) Znf2(x) - 2(n2 - 4)(u2x2 - 2n2 + 2) In(x) 

+ u2x2(n + l)(n + 2) ZflJx) = -8(n2 - 4) sin ax - 24ux cos ax. (32) 

Starting values are 

Z,(x) = 2(sin ax - ax cos ux)/(ux)” 

Z3(x) = sin a~(18 - 48/(u~)~)/(ax)~ + cos UX(~~/(UX)~ - 2)/(ux). 

Relation (32) has the same stability properties as (31). 

(vi) In(x) = [+I I y - x /a sign(y - x) T,(y) dy, CY > -1. 
‘-1 

The recurrence relation is 

( If *) Zn+l(x> - 2xUx) + (1 - -g&) L-l(X) 

= & [(l - x)“+1 + (-1)” (1 + xp+q, (33) 
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with starting values, if j s I -C 1, 

Z,(x) = [(l - xy+r - (1 + s)~+r]/(0l + 1). 
Z,(x) = xl,(x) + [(I - xy+* + (1 + x)k+21/(~ + 2), 
Z*(x) = 4X1&c) - (2x2 + 1) Zo(x) + 2[(1 - X)a+3 - (1 + Q=+7/(~ + 3). 

Forward recursion is stable. 

(vii) where a f 0, 

Mx) = 0, for odd values of n. 

The recurrence relation is 

[ ;+ B + l ] L+*(x) + [; + W + 1) a* + x2 - $g Z,(x) 

+ Lk- 2pl) 1 In-*(x) = -2(1 + u2 + X2)~+r/(n* - 1). (34) 

Starting values are: 

For p = -l/2, z(x) = ln (1 + a2 + x2p2 + 1 ,, 
(1 + u2 + xy - 1 * 

For /I = -1, Z,(x) = 2(a2 + x2)-lp arctan(u2 + x*)-l/8. 

For /3 = -312, Z,(x) = 2(u2 + x2)-l (1 + a* + xy*. 

For /I = -2, Z,(x) = (a” + x2)--1 [(l + a* + x2)-1 

+ (a* + x*)-l/* arctan(a* + x*)-l’“]. 

The value of Z,(x) can be computed from the corresponding value of Z,,(X) using 
the relation 

or 

Z*(x) = r44(1 + a2 + x2)8+l - (3 + 2/3 + 2a2 + 2x2) 1,(x)1/(3 + 2p), 
if /3 # -312, 

4(x) = 2 In (1 + .2 + x2)1/2 _ 1 (l + lz2 + x2)1’2 + l - (1 + 2a2 + 2x3 Z,(x), if j3 = -312. 
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Oliver’s algorithm has to be used with one initial condition. 

(viii) Z,(x) = s_:’ exp[-x/b + 111 T,(y) &- 

The recurrence relation is 

(n + 2)(n - 1) Z,+,(x) + [3n2 + (2x - 1) 12 - 2x - 41 In(x) 
+ [3$ - (2x + 5) IZ - 21 Z,-,(X) + n(n - 3) Z,-,(x) = -8 exp(-x/2). (35) 

Z,(x) = 2 exp(-x/2) - x&(x/2), 
Z,(x) = (x + x2/2) E,(x/2) - x exp( -x/2), 
Z,(x) = -(x + 2x2 + x3/3) &(x/2) + 2(x2 + 4x - 1) exp(-x/2)/3, 

where 

E,(x) = fm (e-“/t) df, (36) -X 

Starting values are, if x # 0 

is the exponential integral. 
If x < 0, the principal value of (36) has to be considered. Chebyshev series 

approximations for the computation of (36) for both x > 0 and x < 0 are given 
in [27]. 

Forward recursion of (35) is not stable, but the error growth is not disastrous. 
If high accuracy is required, Oliver’s algorithm has to be used with 2 initial con- 
ditions. 

(ix) In(x) = 1-T T,(x)/O, - x) dv. 

The recurrence relation is 

Z,+,(x) - 2xW) + L(x) = 0, for n odd, 

Z,+,(x) - 2xZJx) + L(x) = 4/(1 - n2>, for n even. 

Starting values are, if j x / # 1 

Z,(x) = In I (1 - x)/U + xl 
Z,(x) = 2 + xl,(x). 

(37) 

Forward recursion is stable. 
It is important to note that the computation of the starting values of the 
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recurrence relations (23) (24), (28), (31)-(33) is affected by a considerable loss of 
accuracy if ] x I is small. This can be avoided by expanding the expressions for 
z(x) into a Maclaurin series. 

6. CONCLUSION 

In this paper, the usefulness of Chebyshev polynomial expansions for the 
solution of Fredholm integral equations of the second kind is demonstrated. 
Two integral equations, namely, a singular equation encountered in polymer 
physics and the nonsingular Love’s equation, are chosen to show the accuracy 
of the method. A considerable advantage of the method is that the solution is 
expressed as a truncated Chebyshev series. This means that, after calculation of 
the series coefficients, the solution +(x) of the equation can be evaluated for 
arbitrary values of x at low computation effort. This implies that our method is 
very efficient. A disadvantage is that the method is not generally applicable, since 
it requires a recurrence relation which depends on the kernel of the integral 
equation. However, for some important kernels, the recurrence relations are given 
in this paper. 

APPENDIX: CONSTRUCTION OF RECURRENCE RELATIONS 

The construction of the recurrence relations given in this paper requires a good 
knowledge of the properties of the Chebyshev polynomials. It is not possible to 
give generally applicable instructions. We give here one example, namely the deri- 
vation of the recurrence relation of 

Let 

J,,= +’ 
s 

I y - x IV (1 - YY (1 + Y>’ T,(Y) dY, -l 

a < 1, 8, y > -1, IX < 1. 

f 
fl 

K= I y - .t- I-& (y - x)(1 - VI8 (1 + Y)Yfl T,(Y) dY. -l 

Since 

(Y - x)(1 + I’) TdY) = (1/4)[7+7&+2(Y) + 2Tn(Y) + Tn-,(Y)l 

+ ((1 - Gwn+1(Y) + Tn-l(Y)) - XTn(Y), 
we have 

K = (1/4)(Jn+z + 2J,, + Jn-2) + ((1 - .W)[Jn+1 + Jn-I - xJn1 (38) 
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On the other hand, by integration by parts we obtain 

K = + s_:’ 1 y - x I-’ (1 - ~)~+l (1 + y)y+l T,(y) dy 

+Yfl pg 1-y I Y - x IP (Y - w + Y>’ (1 - yY+’ Tn(Y) dY 

I Y - x I--O1 (Y - ,u)(l + Y)’ (1 - YY (1 - Y”) T,‘(Y) dY. 

Since (1 - yz) T,‘(y) = (n/2)[T,+,(y) - Tn+l(y)] we have 

K+$[+ - ; (J?a+z + L-2)] 

+;;I: [ - ; Vn+2 + 2J, + Jn-2) + q (J,+I + Jn-1) - xJn] 

+ 2(/l; 1) [ ’ (Jn-2 + Jn+2> + 4Jn+1 - Jn-A] 5 (3% 

Equating (38) and (39) yields the desired recurrence relation (15). 
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